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Abstract

This paper explores the automated recognition of objects and materials and their relation to

depictions in images of all kinds: photographs, artwork, doodles by children, and any other visual

representation. The way artists of all cultures, ages and skill levels depict objects and materials

furnishes a gamut of “depictions” so wide as to present a severe challenge to current algorithms

– none of them perform satisfactorily across any but a few types of depiction. Indeed, most

algorithms exhibit a significant performance loss when the images used are non photographic in

nature. This loss can be explained using the tacit assumptions that underlay nearly every algorithm

for recognition. Appeal to the Art History literature provides an alternative set of assumptions,

that are more robust to variations in depiction and which offer new ways forward for automated

image analysis. This is important, not just to advance Computer Vision, but because of the new

understanding and applications that it opens.

1 Introduction

Humans possess a remarkable ability: the ability to understand the world visually. We see things

– objects – and recognise them as belonging to an object class: dogs, trees, vases and so on. We

see what these things are made of – their material – and again ascribe a class: glass, fur, metal,

etc. We can infer the presence of things even when we cannot see them directly, hot air causes a

shimmering for example. We can see what things are doing (people walking) and in some cases infer

intent (walking to greet a friend). More than that, we have another equally remarkable ability: to

communicate our visual understanding in pictures. We can recognise dogs in photographs, dogs

painted by Reynolds, dogs drawn by children, dogs that wear clothes and walk on two legs (as in

animation), dogs in road-signs; we recognise dogs made of porcelain and see their fur.

Object recognition by computer is an important and well researched problem. The technical

problem is to ascribe the correct (agree with humans) label to (part of) an image showing an

instance of the class. To date, computers are able to recognise objects from hundreds of different

classes at rates around 98%. Yet these impressive figures mask a deep problem that highlights the

extent to which machines are limited compared to humans: the figures in the literature derive from

experiments using data sets comprised almost exclusively of photographs (also called “natural im-

ages”). When algorithms receive images outside their training depiction (e.g. photo, line drawing)
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there is a fall in performance to below 60%. This is witnessed by Ginosar et al. (2014) , Cai, Wu

& Hall (2015), Cai, Wu, Corradi & Hall (2015) , Collomosse et al. (2017), Geirhos et al. (2018a),

Kubilius et al. (2018) and others. Such lower performance is evident too in Crowley & Zisserman

(2014), Li et al. (2017), Li et al. (2018), Jenicek & Chum (2019). The only algorithm we know that

generalises in a stable way from one depiction to another is Wu et al. (2014).

Research into automated recognition of materials is less common than object recognition. The

literature is dominated by approaches to recover reflectance or transmissive properties of materials

(Matusik et al. 2002, 2003, Deschaintre et al. 2018, Kim et al. 2010, Guarnera et al. 2016). Such

literature will typically seek to elicit numbers for a mathematical model such as the Bidrectional

Reflectance Distribution Function (BRDF) or one of its variants. A BRDF is defined at a tiny patch

of some object: it is the ratio of light energy output in some direction to the light energy input

from some possibly different direction. This is actually a 4-dimensional surface (two dimensions for

input angle, two more for output angle) and different materials have different BRDFs (ie surfaces of

different shapes). This could be used to identify materials, but only in photographs. The question

of automatically recognising material type is a question not of estimation (of a BRDF) but of

classification where the output is some class such as “metal, or “cotton or “brick. It is this problem

that is of greater interest here, and it is one that has more recently come into view (Liu et al.

2010, Hu et al. 2011, Bell et al. 2013, 2015). All of this work assumes photographic like images for

input. So far as we are aware, there is no work at all on automated recognition of materials under

the many variations exhibited by artwork. For example, artists have depicted human hair in many

different ways using many different media, all of which result in recognisable hair. But the artists

don’t know and likely don’t care about the BRDF of hair.

We posit that both object recognition and material recognition are intertwined with the recog-

nition of depiction style. This means that recognising a picture implies being able to recognise the

content (the things), the materials (what things are made of), and depiction (photograph, drawing,

painting etc) all at the same time. At the moment this is beyond any algorithm, but humans are

able to perceive all of these (and much more) with no conscious effort.

The remainder of this paper discusses the above problems in greater detail to understand how

the visual world can be effectively represented by depictions that do not adhere to physical reality.

We first discuss how to recognise objects as things, Section 2, followed by the problems computers

have when things are depicted in artwork in Section 2.1. We then consider the materials things

are made of and argue that recognising things has a role in recognising material type. Finally,

in Section 4, we investigate recognising the depiction style of a picture, where further new results

are presented in relation to classifying depiction type. The single most important conclusion we

reach is that artwork provides a significant challenge for Computer Vision research. This leads us

to challenge the assumptions that are commonly made; analysis of pictures from Art History point

to new assumptions that yield more robust algorithms, which in turn could be of greater use in the

analysis of art.



Figure 1: Left: Object recognition is the problem of placing a picture of a “visual object”
into the correct “visual class”. The classes comprise collections of examples of pictures
showing the same kind of thing. Right: Algorithms learn boundaries between classes
inside a high dimensional space (training) , then place new inputs into the class using the
boundaries. Schematic shown.

2 Recognising Things

Object recognition is rightly considered one of the most important fields within Computer Vision.

From a technical point of view, the problem reduces to placing a new image (a “visual object”)

into the correct group (“visual class”), as seen in Figure 1. As a note , strictly speaking we should

differentiate between “classification” (what is in this picture), “detection” (where is this given thing

in a picture), and “recognition” (what and where to be solved simultaneously). However, the use

of these terms is a matter of convention rather than formal definition, and the terms are often used

interchangeably. For convenience, that is often the case with recognition and classification, and is

the case here.

Figure 1 provides a schematic description of the technical classification process. The visual

classes are defined by collections of example images showing the same kind of visual object. During

training the algorithms place boundaries between the visual classes. These boundaries partition the

space that contains the images; in the figure this is represented by a two-dimensional plane but in

practice the space has hundreds or even thousands of dimensions. Some techniques layout pictures

into columns, with as many elements as pixels. This means each pixel value sits on a distinct

dimension, if there are N pixels there are N dimensions. Each picture can now be considered as a

single point in this N dimensional space, which contains every possible picture with N pixels. Once

this “image space” is partitioned by the boundaries, the training images are no longer needed. Now,

given an image not in the training set the question “which class?” becomes “in which partition?”.

The fractional number of times that the correct partition / class is decided by the algorithm is a

measure of its performance.

The above description is very general. Specific algorithms vary in many different ways. For ex-

ample, approaches may vary how the image space is defined or how the boundaries are constructed.

Many algorithms from around 2000 to about 2013 employed the “Bag of Words” paradigm. This

imagines that an image can be constructed from a set of visual symbols (words) — in reality small

patches of image. This set is sometimes called a “dictionary” and much research at that time was

devoted to crafting these words to have properties that designers thought of as important, eg rotat-

ing a word should not change it (compare this with CNN design, discussed below). Different visual



Figure 2: CNNs learn visual words
to detect similar patterns; word count
place a picture as a point in a
space. Fully connected layers separat-
ing classes. In practice there are many
convolutional and fully connected lay-
ers, which complicate but do not alter
the basic operation in any fundamental
way. Schematic shown.

classes can be differentiated from one another by the frequency with which they contain the visual

words in the dictionary (so image space in this case is the set of all possible histograms). Otherwise

said, the class model is a histogram of words in the dictionary. A new input image is analysed

for the “visual words” it contains, from which a histogram is constructed to compare against the

histograms for each of the visual classes. As for visual words, designers expended significant energy

on developing different forms of classifier. Regardless of their efforts, this approach typically did

not exceed a 70% recognition rate.

Convolutional Neural Networks (CNNs) provide state of the art performance for classification.

They rose to prominence in 2012 with the introduction of “AlexNet” (Krizhevsky et al. 2012) –

named after its inventor, Alex Krizhevsky. AlexNet raised classification rates from about 67% to

above 90%. A schematic of such a network is seen in Figure 2, it contains two main parts. The

first part, called the convolutional layers, learn small (typically, 3 × 3 pixels in size) discriminative

image patches, called kernels. Kernels from the early layers, are combined to make larger patches

in later layers (in practice the image is made smaller so that a 3 × 3 patch covers a larger area).

These patches are equivalent to visual words, they are used to detect similar patch patterns in an

image – we can imagine an image being assembled from the kernel patterns. Now though these

words are learned without any human designer being involved. The second part is made of “fully

connected layers”, which act as the classifier. The aim of these layers is to combine the final patches

to output a binary code that identifies an object, more exactly the pixel values in the patches are

combined using weight values and then thresholded. Again, no human needs to design the classifier.

The purpose of training is to set the kernel values in the convolutional layers and weight values

in the fully connected layers; a process formally called “regression”. The image space is now the

set of all possible values that can be ascribed to all parameters in the network. This can comprise

millions values, and the class boundaries twist and turn in this high-dimensional space as they

“bend around” the class variations,, which why neural networks need so much data to train. The

impressive performance of network compared with earlier work derive from their size and the fact

the kernels and classifier weights are simultaneously learned rather than being separately designed

by humans - the words and classifier “fit together”.

2.1 Recognition in Artwork: the Cross-Depiction Problem

The problem of recognising objects in different depictions, photographs, paintings, sketches and

indeed a full gamut of depiction varieties is called the “cross-depiction problem”. There is large



and growing body of evidence that no algorithm is able to recognise objects across all depictions

with the versatility that humans exhibit. Note that by “artwork” we include not just artefacts in

museums and galleries, we include too road-signs, childrens’ artwork, clip-art and anything else that

expresses understanding in visual form, for which we use the short-hand “visual understanding”.

We have conducted extensive tests on the cross-depiction problem (Hall et al. 2015) – the

results of which are summarised in Figure 3. We constructed a dataset of 50 different visual

classes and differentiated images between “photographs” and “artwork”. The algorithms we used

covered several variants of Bag of Words (e.g. Csurka et al. (2004)) using different features, namely

SIFT (Lowe 2004), geomtric blurring (Berg & Malik 2001), self-similarity descriptors (Shechtman

& Irani 2007), and two version of histogram of gradients (Dalal & Triggs 2005, Hu et al. 2013).

Additionally, we included the Fischler Vector (Fischler & Elschlager 1973) and two constellation

models – the well known Deformable Part Model (Felzenszwalb et al. 2010) and the so-called called

“multi-graph” (MG). MG is a fully connected graph of multiple labels on nodes (Wu et al. 2014).

We also tested using the neural algorithm VGG-19 (Simonyan & Zisserman 2014) that has been

used for search of database of Fine Art (Crowley & Zisserman 2014).

For each algorithm, we trained on photographs alone (P), artwork alone (A), or a mixture (M)

of the two, and then tested on photographs alone (P), on artwork alone (A), and on a mixture (M).

In Figure 3, (M-P)) means “train on mix, test on photo”, for example. When the training and test

set both comprise photographs (P-P), algorithms perform in line with results commonly reported

in the the literature: about 67% for BoW and above 90% for neural algorithms. All algorithms,

with the exception of MG, suffer a considerable performance loss when generalising away from

the training domain (e.g. photographs). The most dramatic fall comes when the training set is

photographic and the test set is artistic (P-A): BoW algorithms fall to below 50% and in some

cases 30%; even the neural architecture falls to just above 70%. Only the MG algorithm by Wu

et al. (2014) remains more-or-less stable across all conditions.

These results are echoed in the data and observations of others, including but not limited

to Ginosar et al. (2014), Crowley & Zisserman (2014), Collomosse et al. (2017), Kubilius et al.

(2018), Geirhos et al. (2018a), Jenicek & Chum (2019). Some researchers have applied emerging

techniques such as “meta learning” and “learning to learn” to the cross-depiction problem. In this

understanding, the problem is to generalise what has been learned in training domains (depiction

styles) to new test domains. For example, use what is known from photographs to influence learning

about sketches; these are so-called Domain Generalisation algorithms. MLDG (Li et al. 2018) and

MetaReg (Balaji et al. 2018) are two of the most recent neural examples. Both of them adjust

the way in which the distance between objects is measured to allow for the difference between

depictions. Neither of these are able to achieve a performance above 70% when generalising from

photographs to artwork, which is consistent with the performance fall seen in Figure 3.

We equalled the performance of these complex algorithms in a far simpler way; by using fixed

random values in the final fully-connected layer (Boulton & Hall 2019). An intuitive understanding

may be had by considering Figure 2. The schematic is a useful simplification in that it associates

different directions with distinct visual words, but mathematically speaking this is not necessary.

If each direction line is rotated about the origin the coordinates (lengths of the dashed lines) of a



Figure 3: Results from our cross-
depiction experiment. Bag of Words
(BoW), graph-based models (DPM,
MG) and a CNN. All but MG exhibit
a significant fall in performance when
generalising away from their training
domain. The drop from photographs
to artwork (P-A) is particularly pro-
nounced.

Figure 4: Performance falls because
boundaries between classes are highly
curved and the distance between art-
work and photographs is large. Train-
ing on photographs alone may pro-
duce high quality boundaries for pho-
tographs (solid line), but when ex-
tended to reach artwork the bound-
aries become confused (dashed line).
Schematic shown.

picture will change but different pictures will remain separated. An analogy is to tourist locations

in cities – hotel maps, guide books, and official maps may all use different coordinate systems,

but the relation between the sites remains constant. Now recall CNNs normally learn words and

surfaces at the same time, by fixing the fully connected layers we force the (now random) directions

to play an equivalent role to a separating surface. (Imagine a book with an arrow attached to its

cover, when the book rests flat on a table the arrow points vertically up. If the book is moved in

3D space the arrow moves with it. This works in reverse: knowing where the arrow is tells us where

the book is. In our case, the direction of the arrow is fixed.) Our network is forced to learn visual

words that place pictures with the same content along the same direction line.

The fact such a simple approach is as effective as far more complicated alternatives suggests

that even sophisticated measures in image space are not effective, which suggests that the particular

form of image space may not suitable for the cross-depiction problem. In other words, pixels and

measures made directly from pixels are poor ways to represent objects. This is not a surprise,

because pixels are designed to store, carry and display information agnostic to content.

2.2 Explaining the Failure

The reason for lack of generalisation is “over fitting”, Figure 4 provides an illustration of this prob-

lem. Evidence from Hall et al. (2015) suggests that photographs of different things (e.g. horse, Eiffel

tower) are closer together in image space (more similar) than the same thing in different depictions.

Consequently, the high-dimensional boundaries that separate “photo objects” objects must be very

closely specified (with a lot of data) to separate classes in the photo-region of image space. When

extended to reach artwork, the boundaries are very likely to criss-cross one another, which produces

false results and so lowers performance. Simply put: the boundaries do not extrapolate well.

One response to the problem of over-fitting is to increase the quantity of data, in this case to



Figure 5: A graph model for the object
class “person”. Each node corresponds
to some part and is connected to every
other node by an arc. Projection de-
termines the arrangement of nodes on
the image plane. Each node is labelled
with more than one visual word, allow-
ing it to describe different denotations).

include images that span more than one depictive type. In principle this is correct because more

data allows the between-class boundaries to be more closely defined – provided the machines are

large enough to represent the highly curved multi-dimensional surfaces that separate classes. In

practice, this would require such a vast number of images from all depictions that it is impracticable.

Moreover, the fact that training datasets are heavily biased towards photographs is a major problem.

Fitting boundaries between objects that span depictions demands a balanced number of examples

in each depiction; any imbalance means the training algorithm are drawn towards the dominant

depiction. It is not clear where the additional artwork would come from, and removing photographic

data is not an option because neural networks require huge volumes of data to fit the separation

surfaces.

We argue that the problem is in the way image space is represented. Pixels are designed for

engineering problems such as the transmission, storage, and display of any image - regardless of

content. Pixels by design, are agnostic to image content. People are very different. The fact

they tend to draw what they know rather than what they see - and the fact they are so adept at

recognition - and the fact they can do things like make a picture from a text description (and vice

versa) is evidence that people use a very different way to represent image content. Image space for

humans is not the same image space as used by machines: one has dimensions defined by low-level

values, the other is probably bound up with natural language see, e.g. Pylyshyn (1973), Kosslyn

& Pomerantz (1977) for philosophical discussion.

The artwork of children is particularly useful when considering an alternative way to represent

things in images. Art Theorist Willats (1997) notes that provided the connectivity and spatial

relations between parts is maintained, the object in childrens’ art can be recognised. This means

that rather than using pixel based visual words to represent objects, humans may use a graph

based representation 1. Consistent with this, we found representations based on graphs and spatial

relations generalised well (Wu et al. 2014) – the MG-graph in Figure‘3 is reasonable stable. Figure 5

shows a typical MG-graph model – graph nodes correspond to object parts such as “head”, “body”,

“hand” etc. In the model, the underlying skeleton for the object class is the same regardless of how

any object in the class is depicted. The spatial location of these parts can change, upto a limit,

and still be the same thing. The specific appearance of the object in an image is dictated by the

1A graph is mathematical way to encode relationships between pairs of things, Figure 5 shows a graph with “nodes”
corresponding to things like heads and hands. The graph “arcs” connect node pairs possibly with a number to indicate
the strength of the relationship.



choice of visual words / kernels/ pixel-patterns used to depict the individual parts. Words taken

from the “photographic” region of pixel-space yield an overall photographic appearance, whereas

visual words taken from the “line drawing” region yield a line-drawing like image. This model is

not only robust to variations in depiction, but a variant of it has been used to synthesise child-like

art, cave paintings, and output inspired by Miró (Hall & Song 2013).

Our argument – that networks are not good ways to represent objects in images – is not with-

out controversy. Kubilius et al. (2018) have conducted careful laboratory controlled experiments

to compare human and algorithm performance. They claim that their model is “sufficiently rich

to support suprahuman-level performance across multiple visual domains”. They trained on Ima-

geNet (Geirhos et al. 2018b) and tested using processed versions of photographs: blurring, swirling,

and block-shuffling image squares to make new pictures from old; they also used depictions they

name paintings, sketches, cartoons, and line-drawings. They limited the number of test object

classes to 10, and used 12 images per class in the various forms. They found that the network

clearly outperformed humans when presented with block-shuffled photographs, and barely out-

performed humans for swirled photographs. Humans out performed algorithms for some blurred

photographs and all of the artwork. We argue that the correct conclusion is that the algorithms are

learning low-level features that are robust to image edits such as block-shuffling, whereas humans

are using representations that are sensitive to arbitrary changes in the spatial location of parts. We

note too that the network outperforms humans only in cases that resemble training conditions –

their networks is trained on randomly selected image sub-blocks that have been resized (blurred),

for example. Kubilius et al. (2018) also found that a network trained on all images outperformed

humans in all cases; this is not a test for generalisation and given the small number of classes

and test images along with the large size of the network means the network has the capacity to

encode all the data, by analogy it “remembers” everything. Furthermore, Geirhos et al. (2018a)

have also directly compared human and algorithm performance using processed photographs, in

their case adding noise of various kinds and to varying degrees in a way that did not change the

spatial configuration of image parts. They use state-of-the art neural algorithms: ResNet-152 (He

et al. 2016) , GoogLeNet, (Bengio et al. 1994), and VGG-19 (Simonyan & Zisserman 2014). They

found humans consistently outperformed all of the algorithms, which is consistent with all of the

evidence we have.

An important point lies within the details of Kubilius et al. (2018) experiment. They gave

people a fleeting 0.1 seconds to recognise image content. The results show that people were better

at recognising objects in artwork (close to 100%) than they are at recognising objects in photographs

(about 80%). This is consistent with artwork being an abstraction of photographic content; abstract

in the sense of discarding information that is redundant for recognition. Yet the artwork they use

includes geometric and spatial distortions, a face has too-close eyes and lacks a nose, for example –

but unlike block-shuffling, these distortions don’t change the underlying structural relations between

parts. All of which is evidence that the way humans represent things in images is very different

from the way computers currently do.



3 Recognising Materials

In the introduction we distinguished between algorithms that attempt to recover reflective prop-

erties of things and algorithms that try to classify what a thing is made of. As noted, these are

not the same problem – we are interested in the classification problem. In general, it is impossible

to estimate reflective properties of materials from artwork, even in cases where the material can

be recognised. Indeed, it is that fact that makes recognising materials in art such an interesting

open question: what image properties do people use to correctly infer material type, even when the

rendering contain no information about reflective properties. Whatever the answer is, it is clear

that the problem of recognising materials in artwork is a more general and difficult problem than

recognising materials in photographs.

Materials have been convincingly depicted in art since the time of van Eyck: gold, fabrics, milk,

the skin of fruits, and the skin of people are but a few of the many that have been believably

rendered. The translucent nature of oil paint possibly provides an advantage over media such

as tempra and fresco, because many materials are themselves translucent. Just as humans can

recognise objects robust to a wide variation in depiction, so too they can name materials also

across a broad range of depictions, not limited to oil paints. So it is that hair, water, fire and even

the breath of God have been depicted in fresco, pastel, and indeed many other media that lack

transparency. Ideally, an algorithm would be able to capture such things, and maybe infer physical

properties such as the feel of a woven garment, the weight of a concrete slab, or the coldness of ice.

We are a long way from such sophistication.

The majority of the computational methods that exist are aimed at recovering physical re-

flectance properties, usually the bi-directional reflectance distribution function (BRDF), or similar

alternatives (Torrance & Sparrow 1966, Deschaintre et al. 2018, Ergun et al. 2016). Recognition

of material type, such as “glass”, “metal”, “brick”and so on does not require reflection properties

to be inferred, instead algorithms us low-level statistical measures taken directly from an image.

Recent authors have constructed databases and employed deep learning to identify materials (Liu

et al. 2010, Hu et al. 2011, Schwartz & Nishino 2013, Bell et al. 2013, 2015, Caesar et al. 2018).

It seems that material is harder to recognise than things – accuracy rates reaching about 71% are

reported. When we take into account the wide range of appearances that any one thing may have,

even in natural images, this figure is not altogether surprising. For example, water is coloured by

the things it reflects, any particles suspended in it, and at sufficient density the water will become

mud; material appearance is a complex psycho-physical phenomenon. Furthermore, the images in

databases are all photographic.

Convincing explanations of human perception of materials are taking shape, e.g. Fleming (2014).

In particular, the hypothesis is that humans form statistical models of appearance, and that such

models are feasible because the appearance of objects changes systematically when light conditions

change. This means that a set of measures can be taken directly from a compact distribution in

measure space. Interestingly, Matusik et al. (2002) proves that physical realisable reflectance models

form a convex set: any image measures used by the human visual system must be correlated to

these, and a linear mapping would helpfully preserve convexity. Wiebel et al. (2015) use the mean,



standard deviation, skewness, and kurtosis along with minimum and maximum values to argue

that skew correlates with gloss perception in computer graphic images, but standard deviation is

a better correlate with gloss in photographs.

The fact that people can attribute the same material label to objects across many different

depictions is, we argue, an under-researched phenomenon. Evidence from object recognition (eg

Figure 3) and from depiction recognition (eg Figure 7) shows that the underlying statistics for some

thing can be very different – yet humans continue to recognise that thing as being made of the

same material. This strongly suggests that an explanation for material recognition cannot appeal to

low-level statistics alone, but that knowing what a thing is will influence what it is seen to be made

of. As with objects, it is unlikely that pixels are the optimal way to represent materials, rather

some kind of class-conditional representation may be needed. Material recognition in artwork opens

many interesting questions.

4 Recognising Depiction

There is a seemingly endless variety of depictions, photographs, oil paints, line drawings, tapestry,

stained glass, doodles, and many more. All of them are capable of communicating things and

materials. There is a small quantity of work on automatically recognising depiction style. The

authors often use their own definitions of style mixed with more widely accepted terms. Karayev

et al. (2013) use terms such as “HDR”, “vintage”, and “Noir” to label images in photographic

dataset, while “Baroque”, “Cubism”, and “Impressionism” are example labels used for an artistic

database. The authors utilize several different kinds of features to describe images and then classify

the images into their style terms. They obtain reasonable results, with an error rate that depend on

style: ranging from about 61% for “Romantic” photographs to 94% for Ukiyo-e and other artwork.

Bar et al. (2014) adopt a very similar approach; they test a collection of low-level image descriptors

and conclude that a particular design of visual words called “Local Binary Patterns” (Ojala et al.

1996) are to be preferred. Likewise, Falomir et al. (2018) use colour descriptors to categorise artwork

into “Baroque”, “Impressionism”, and “post-Impressionism” to about 65% accuracy. Gultepe et al.

(2018) learn rather than pre-define features. The above represent the general approach which is

to take measures from local image regions and then build a classifier using a collection of such

measures. We note that this methodology echoes the low-level approaches used to recognise things

and material.

We have found a different, simpler approach to be effective for classification of depiction type.

By depiction type we refer to the rendering media and the way it is applied as opposed to genre or

school, etc. Recall our observations in Section 2.1 that (a) object classification does not generalise

well over variations in depiction, and (b) that this can be explained (in part) by the wide variation in

low-level statistic differences between depictions. We turned this to our advantage by conjecturing

that depictions will respond differently to convolutional kernels. This is justified because a given

kernel tends to produce a maximum response at image patches that resemble the kernel, and

minimal values where the pattern is the kernel’s negative. As example, a kernel that looks like a

dark line on a white background will tend to pick up “ridges”, where as a kernel dark one side



Figure 6: Left: a schematic of our approach to depiction classification. Right: results of
depiction and object classification on a per-layer basis

and light the other will detect contrast boundaries (commonly called “edges”). Photographs tend

to contain many contrast boundaries, especially at the small scales used by kernels, whereas (e.g.)

line drawings will contain a greater number of ridges. We can therefore expect that the relative

abundance of the kernels in an image (as measured aggregating the signal from each kernel over

whole image) is informative with respect to depiction.

We tested this intuition using the Inception-v3 neural network (Szegedy et al. 2016); a very large

neural network designed for object classification. The network is normally trained using ImageNet

which contains thousands of object classes (Russakovsky et al. 2015); we trained for object class

recogniton using the PACS dataset (Li et al. 2017) that comprises seven object classes each depicted

in four styles, named “Photo”, “Art”, “Cartoon”,“Sketch”. Following our intuition, we would

expect the kernels of the trained Inception network to respond differently to different depictions:

for any input image, we aggregate kernel responses over the whole image into a histogram. If

our intuition is correct, then these histograms of kernel responses will characterise depiction style.

We used these histograms to cluster and classify the images using a KNN classifier. We extract

histograms after every layer to gain insight into how the Inception network operates in a multi-

depiction setting.

Our procedure and results are shown in Figure 6. We see that early layers of the network can be

used to classify depiction but not objects, where as later layers classify objects but not depiction.

The high performance of object classification in later layers is explained because: (a) Inception is

a large net designed for 1000s of classes, whereas PACS has 7 object types and 4 depiction styles;

and (b) the net was trained on all data and no attempt was made to generalise to new depictions.

As we will explain, the net is large enough that it has the capacity to internally learn to recognise

different depictions of the same visual object, rather than learn a single depiction-agnostic method

for identifying a visual object.

Figure 7 provides a more detailed examination of our results. It shows image-space represen-

tations from three locations in the network layers; an early layer, a mid layer close to where the

classification curves in Figure 6 cross, and the final convolutional layer. We visualise these clusters

twice – once in which datapoints are coloured by depiction class, and a second time coloured by

object class. We used the t-SNE visualisation method to project data in a high dimensional space



Figure 7: Visualisations of how images in PACS cluster at different layers of the Inception
network. Each dot is an image, each column shows clusters from a given layer of the
network, with rows colouring to dots by depiction (top) and object (bottom). In early
layers the clusters are separated by depiction type, in later layers the cluster form into
object classes. This explains the data seen in Figure 6; layer 9 is the crossing point
classification curves and clusters illustrates the confusion.

in two dimensions (Maaten & Hinton 2008). The figure illustrates that in the early layers of the

network the images implicitly cluster by depiction class, whereas later they cluster by object class.

“Photo” and “Art” images seem to cluster together in this visualisation, but are separable in the

original high-dimensional space, as evidenced in the classification results of Figure 6.

We did not generalise the trained Inception net to recognise objects in new depiction styles,

rather the training data contained all styles. The results show clusters made by the test set

only. Note that high object classification rate is consistent with Kubilius et al. (2018) who argued

networks can exhibit “suprahuman-level performance ”, but we found that the characteristic fall in

object classification performance still occurs when generalising to unseen depiction classes. These

results are evidence that the network does not learn a single generalising template for an object

class; instead, the network is large enough to learn to aggregate distinct depiction-specific kernel

responses into single object classes. This behaviour is problematic because it hinders generalisation

to new depictions. Even using pre-trained networks that claim to employ a generic feature detector,

the image space still seems to organise itself as shown in Figure 6 – see Wilber et al. (2017) for

visualisations of ResNet embeddings of the BAM dataset, for example.

Before leaving this section we should make an important note. The first is that computer

recognition of objects, materials, and depiction is all largely premised on visual words, whether

learned or designed. We have already commented on the paucity of such representations for both

object and material recognition, and here we are compelled to again rise above these low-level

forms to understand art. Styles such as Byzantine art that uses inverse perspective, or traditional

Chinese art that uses orthogonal projection cannot be distinguished from images made using the

same media and application method, but constructed using linear perspective. As Willats Willats

(1997) points out spatial organisation plays a significant role in style identification, just as it does

in object and material identification.



5 Concluding Remarks

Object recognition is not solved. In particular, there is no algorithm capable of recognising objects

regardless of the style in which they are depicted. Equally, the recognition of materials and of

style (or depiction) remains open. Yet humans are able to disentangle all three; humans can make

statements such as “man on horse, wearing armour, depicted using hatching”.

The difference between humans and machine performance is fascinating, and a driver for inves-

tigation. It seems all but unarguable that humans make pictures to express their understanding of

the world in visual terms. Exactly how humans represent images is at best unclear, and we are not

willing to speculate. The Art History literature offers a way forward for Computer Vision. We have

been heavily influenced by theorist John Willats (Willats 1997), who pointed out that childrens’

art preserves connectivity between parts, that spatial relations between parts is variable within

limits, and that shape and other geometric factors are important. Willats goes on to differentiate

“projection” from “denotation”, the first of which says where a part is, the second says what relates

to the way marks are made. In Computer Vision terms these equate to spatial mappings and

texture mappings. As described above, nearly all algorithms are based on texture and ignore the

spatial component. MG algorithm (Wu et al. 2014) is one of the few exceptions – it was heavily

influenced by Willats, and is reasonably robust to variations in depiction.

Decomposing style into projection and denotation is a useful idea, it moves us away from low-

level image statistics and towards global semantic descriptions of depiction style. Thus it offers

the possibility of disentangling things from their depiction. Once the class of a thing is known,

the material it is made of tends to be limited – we know dogs tend to be covered in fur. We also

know that dog figurines can be made of porcelain, as mentioned in the Introduction. The extent

to which such background knowledge interacts with an intuition regarding porcelain reflectivity is

not known to us, but is an interesting open question.

Artwork extends the problem of recognition in other ways too. Optical illusions such as the

elephant with an indeterminate number of legs imply some information (ears, tusk) is more im-

portant to identity than others (legs). The vase/two-faces illusion, along with rabbit/duck and

others, suggest that algorithms should not necessarily aim to produce a single answer but allow the

possibility to “flip” between solutions. A similar conclusion can be drawn from Fine Art: when

Magritte renders an apple over a face, when Archimboldo constructs faces from fruit, and countless

other examples further challenge accepted assumptions of recognition. In such cases, a rendered

thing serves two roles simultaneously: “pear” and “nose”, for example. Moreover, recognition of

mythical beasts, such as Minotaurs, and metaphorical representations of death and the devil hold

yet further questions – recognition requires knowledge not in the image itself. Likewise, authors

such as Berger (2008) who rightly point to the wider, societal meaning of symbols open similar

questions for automated recognition.

Art and Art History has the potential to propel Computer Vision in fundamental ways. And in

doing so may well benefit from a deeper, more robust tools to assist human experts. Clearly, there

is a lot of work to be done.
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